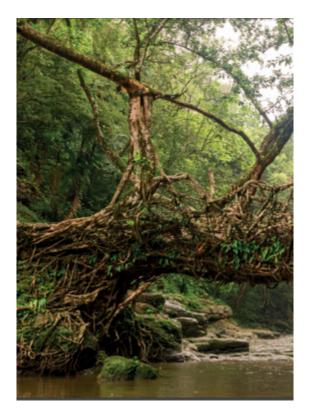
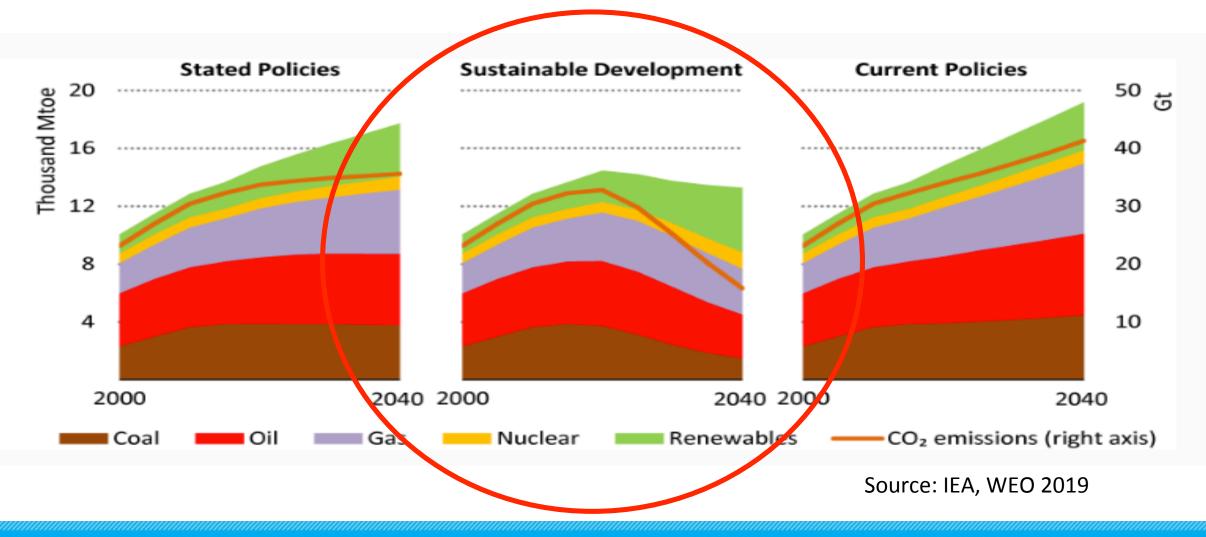
Social Impacts of Decarbonisation

An Energy Investment Perspective 6 December 2019 / London


Jay Wagner, Director Plexus Energy www.plexusenergy.net

POLICY CONTEXT

- Major policy shift towards deep reductions in carbon emissions and the deployment of Renewable Energy (RE) to implement Paris targets
- IEA estimates between \$58 \$72 trillion to meet global energy demand to 2040, even more to fund large scale deployment of RE Technology
- Decarbonisation a complex socio-technological transformation with major economic, political and social implications
- Involves decisions on the kind of energy systems to build, where to build them and how to distribute their benefits, costs and risks
- Gap between expectations of a fast renewable energy-driven energy transition and the continued reliance on fossil fuel based energy systems



3

World primary energy demand by fuel and related CO₂ emissions by scenario

SDG 7 - ENERGY ACCESS

- 1 billion people without access to electricity
- Premature deaths due to air pollution/indoor air pollution
- Lack of access to clean energy and deforestation (fire wood)
- Implications of growing energy access on energy demand and CO₂ emissions

DECARBONISATION

... the process by which the average amount of carbon in primary energy reduces over a period

To remove carbon from …

Key options include:

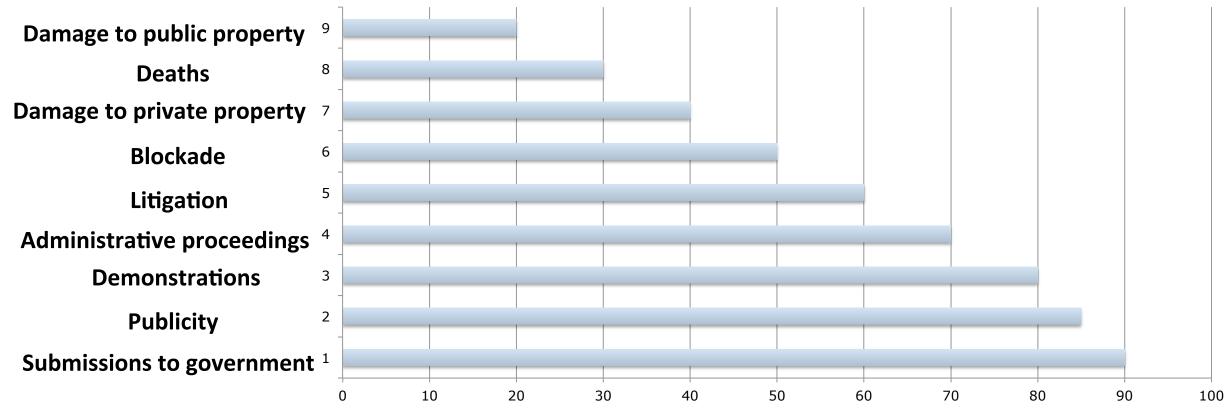
- Natural Gas (transition fuel)
- Renewable Energy at scale (wind, hydro, solar, biofuels)
- Carbon Capture and Storage (CCS)
- Phasing out coal and unconventional fuels (e.g. oil sands)
- Energy efficiency
- Preserving natural carbon sinks and reforestation
- Behavioural change
- Consider environmental and social impacts of Renewable Energy Systems (RES) at scale

Concerns over Oil and Gas Projects Concerns over Land Use + Cumulative Impacts

Example: Hydropower

- Social impacts of Hydropower projects
- Growing incidence of social conflict
- Importance of meaningful stakeholder engagement
- Even small project can have big impacts

EXAMPLE: ENERGY PROJECTS AND SOCIAL CONFLICT IN CENTRAL AMERICA



9

Cost of Conflict

Source: Davis & Franks (2014)

CARBON CAPTURE AND STORAGE

- CCS at scale needed to avoid dangerous climate change
- CCS remains well off track
- Government policy framework important
- Public acceptance of CCS is a key issue
- Example of Barendrecht Project in The Netherlands:
 - o failed due to public concerns over safety
 - o flawed stakeholder engagement process

Benban Solar Project (Egypt)

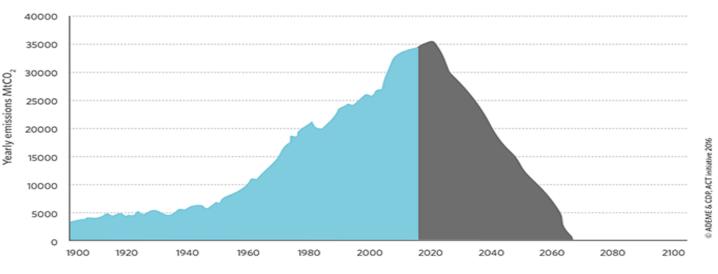
- Largest solar power construction project in the world
- Early focus on social impacts and managing influx of construction workers a success
- Early and continuous engagement with local stakeholders paid off
- Focus on local employment and delivery of benefits to local tribes
- Advance planning of workforce demobilisation following construction

12

NB: PERCEPTION IS REALITY

- What people fear appears real
- What they hear appears real
- What they see appears real

Perceptions must be addressed



13

World CO₂ emissions under a 2°C mitigation scenario

- Paris Climate Agreement driving decarbonisation agenda
- Solar energy will become world's largest source of energy by 2050 (INRENA)
- But decarbonisation is difficult. Renewable energy only one of several pathways
- Think beyond engineering / financial aspects – vital to address social impacts
- Important lessons from extractive Industry regarding social impact management

Source: ADEME 2016

14

CONCLUSIONS

 Conclusion No 1 Energy transition an investment opportunity Vital to address the social dimension 	 Conclusion No 2: Risk for RES to result in similar conflicts as OG Learn lessons from non-renewable sectors
 Conclusion No 3: Beware the cost of social conflict Public acceptance a key issue 	 Conclusion No 4: Meaningful stakeholder engagement Value proposition for local stakeholders
 Conclusion No 5: Good tools already exist (e.g. IFC PS) Avoid Sub-Prime risk (not all ESIAs are good) 	 Conclusion No 6 Ignoring social dimension risks value erosion Value erosion a risk across all energy systems